Guided Verbalization for Conceptual Understanding: A scaffold for making sense of multiple traces of cognition

School of Computer & Cognitive Sciences
Chukyo University, Japan

Hajime Shirouzu & Naomi Miyake
{shirouzu,nmiyake}@sccs.chukyo-u.ac.jp
Learning Case in Focus

- A 6th grade classroom in a remote branch school
- Six students (Girls: Child K, N; Boys: Child Y, N, O, F)
 - They had learned fractional calculation and were of similar performance on math.
- One teacher-experimenter (The first author)
- The first lesson (about 50 min.) at Oct. 1998
 - to think of the meaning of fractional multiplication
 - Six months later
- A follow up inquiry at Mar. 1999
 - to ultimately introduce cognitive science
一人一人き大切にするクラスに

T
G
K
F
N
O
Y
Task in the Lesson

“Please CUT OUT the 3/4 of 2/3 of the origami paper’s area”
Multiple Traces of Cognition

N1, G1, O, F

G2

K

N2

Y
My answer is $\frac{3}{4}$ of $\frac{2}{3}$

My answer is $\frac{3}{6}$, half

My answer is $\frac{2}{3}$ of $\frac{3}{4}$

My answer is $\frac{3}{4}$ of $\frac{2}{3}$

My answer is $\frac{3}{4}$ of $\frac{2}{3}$
My answer is $\frac{3}{4}$ of $\frac{2}{3}$

My answer is $\frac{3}{6}$, half

My answer is $\frac{2}{3}$ of $\frac{3}{4}$

My answer is $\frac{3}{4}$ of $\frac{2}{3}$

My answer is $\frac{3}{4}$ of $\frac{2}{3}$
Integration of Multiple Traces

Why different variations to the same task?
All but G stayed at level 1

Level 1: $\frac{3}{4}$ of $\frac{2}{3}$
Level 2: Half

Interpretation Level
Multiple Traces of Cognition
One Trace Multiple Interpretation

"3/4 of 2/3 "

"Three out of six cells"

"Half"

"2/3 X 3/4 = 1/2"

Degree of abstraction
Paired comparison

Comparison gradually works;
T wrote the results of comparison,

“Exactly the same,”
“The same form, but different in the making way,”
“The same area”
Teacher guided integration process

Level 1: No relation
Level 2: “Self-centered” linking
Level 3: “Among other’s”
Level 4: Integration
Guided integration preceded abstraction

Thinking why variations could be integrated led to the spontaneous verbalization of abstraction.
Six months later

• Three out of the six students reported algorithmic point-of-view.

 “Using the origami paper, we made its 3/4 of 2/3 area. Multiplying 2/3 by 3/4 was 1/2, and we worked out why it (the goal area) equaled 1/2.”

↑

Exposure to Collaborative Learning situation
= Variations of verbalization differing in abstraction level

• Individual differences depending on their verbalization

↑

Spontaneous language use (incl. Paraphrasing own thoughts) for abstraction
Paired comparison

N1, G1, O, F

G2

K

N2

Y

“Exactly the same,”
“The same form, but different in the making way,”
“The same area”
Class as An Interactive Learning System

Increasing variations

N1, G2, O, F

G2

T’s scaffolds

Integration by language label

N2

K

Y
Learners:

Integration of Multiple Traces Of Cognition \[\Rightarrow\] Abstraction

\[\Leftrightarrow\] Conceptual Understanding
Guide-able by the Teacher’s Scaffolds

Learners: Integration of Multiple Traces Of Cognition

Guided Verbalization

Abstraction

Conceptual Understanding
Seeking the zone

1. T: Next question is, are all of them the same? Oh, you shake your heads, hhh. Cs:...
2. T: Do you want any materials? They would help.
3. T: Do you want particular one? (Leaning over G) Don’t hesitate. G:...
4. T: Didn’t you say something?
5. T: Is there anybody who thinks the same? (T raising his hand) Cs:...
6. T: Can you say these are the same in this point, but different in that point? Cs:...
7. T: Do you want compare? Cs:...

...Teacher failed seven times.
Traces were integrated by “the area”

T: We have various kinds of the answer: the same in every point, in the form or only in the area. Now, what point is always the same?

Cs: (in a low voice) the area, (in unison) area

/Integration Level 4

T: How wide is it?”

Cs: over, over half (in very low voices)

Y: One-half of the whole

T: One-half of the whole. Why?

Yoshio stood up and came in front of the board. With pointing one of the results, he said:
Traces were interpreted more abstract

Y: If I combine this (the answer) with this (the rest), these equal the original. So I think it is the half. /Interpretation Level 2

Y: The another reason is that the task is to make 3/4 out of the 2/3, so, if I multiply these two fractions, I can see what the answer is in the frame of the whole. And 2/3 times 3/4 is 6/12, which equals one-half. So, all of these (answers) are equal to the one-half of original area. What do you all think about? /Interpretation Level 3

All: “that’s all right” in one voice.
Why four levels? : Analytical Framework

- Paired college students in laboratory experiments gained flexibility in solution through *verbalization in collaborative reflection upon the externalized trace.*

 -- Shirouzu, Miyake, & Masukawa (in print)

Cognitive Science

☞ Borrowing this analytical framework to re-analyze the case above.
Task: Drawing oblique lines of
1st: 2/3 of 3/4 area
→2nd: 3/4 of 2/3 area

Pairs’ Flexibility versus Solos’
In solving 2/3 of 3/4 problem of the first task,

LEVEL 1: the “3/4” area requiring one more operation of folding
☞ describing the external-dependant solutions as it were

LEVEL 2: the “2/3 of 3/4” area that has already emerged as the answer
☞ foreseeing where the goal area is

LEVEL 3: the “2/4” area, the “one-half” of the original
☞ seeing the goal area in the frame of the original size

LEVEL 4: the “1/2” area, the answer of the calculation
☞ seeing the goal area arithmetically
Seven out of the nine shifting pairs gradually revised their views on the trace

Triggered by

• Comparison among multiple views

• Think why for reinterpretation

Typical Pattern
Interests

• Collaborative learning:
 Shirouzu, Miyake, & Masukawa (in print)
 Cognitive Science

• Supporting Integration Process

• Meta-cognition